Posts Tagged ‘fibre’

Traffic Load Balancing in Cisco UCS

December 21, 2015

Whenever I deploy a Cisco UCS at a customer the question I get asked a lot is how traffic flows within the system between VMs running on the blades and FEX modules, FEX modules and Fabric Interconnects and finally how it’s uplinked to the network core.

Cisco has a range of CNA cards for UCS blades. With VIC 1280 you get 8 x 10Gb ports split between two FEX modules for redundancy. And FEX modules on their own can have up to 8 x 10Gb Fabric Interconnect facing interfaces, which can give you up to 160Gb of bandwidth per chassis. And all these numbers may sound impressive, but unless you understand how your VMs traffic flows through UCS it’s easy to make wrong assumptions on what per VM and aggregate bandwidth you can achieve. So let’s dive deep into UCS and shed some light on how VM traffic is load-balanced within the system.

UCS Hardware Components

Each Fabric Extender (FEX) has external and internal ports. External FEX ports are patched to FIs and internal ports are internally wired to the blade adapters. FEX 2204 has 4 external and 16 internal and FEX 2208 has 8 external and 32 internal ports.

External ports are connected to FIs in powers of two: 1, 2, 4 or 8 ports per FEX and form a port channel (make sure to use “Port Channel” link grouping preference under Chassis/FEX Discovery Policy). Same rule is applied to blade Virtual Interface Cards (VIC). The most common VIC 1240 and 1280 have 4 x 10Gb and 8 x 10Gb ports respectively and also form a port channel to the internal FEX ports. Every VIC adaptor is connected to both FEX modules for redundancy.

chassis_network

Fabric Interconnects are then patched to your network core and FC Fabric (if you have one). Whether Ethernet uplinks will be individual uplinks or port channels will depend on your network topology. For fibre uplinks the rule of thumb is to patch FI A to your FC Fabric A and FI B to FC Fabric B, which follows the common FC traffic isolation principle.

Virtual Circuits

To provide network and storage connectivity to blades you create virtual NICs and virtual HBAs on each blade. Since internally UCS uses FCoE to transfer FC frames, both vNICs and vHBAs use the same 10GbE uplinks to send and receive traffic. Worth mentioning that Cisco uses Data Center Bridging (DCB) protocol with it’s sub-protocols Priority Flow Control (PFC) and Enhanced Transmission Selection (ETS), which guarantee that FC frames have higher priority in the queue and are processed first to ensure low latency. But I digress.

UCS assigns a virtual circuit to each virtual adaptor, which is a representation of how the traffic traverses the system all the way from the VIC port to a FEX internal port, then FEX external port, FI server port and finally a FI uplink. You can trace the full path of each virtual adaptor in UCS Manager by selecting a Service Profile and viewing the VIF Paths tab.

vif_paths

In this example we have a blade with four vNICs and two vHBAs which are split between two fabrics. All virtual adaptors on fabric A are connected through VIC port channel PC-1283 which is represented as port channel PC-1025 on the FEX A side. Then traffic leaves FEX A and reaches the Fabric Interconnect A which sends the traffic out to the network core through port channel A/PC-1.

You can also get the list of port channels from the FI CLI:

# connect nxos
# show port-channel summary

ucs_portchannels

Network Load Balancing

Now that we know how all components are interconnected to each other, let’s discuss the traffic flow in a typical VMware environment and how we achieve the massive network throughput that UCS provides.

As an example let’s take a look at the vSwitch where your VM Network port group is configured. vSwitch will have two uplinks – one goes to Fabric A and the other one to Fabric B for redundancy. Default load balancing policy on a vSwitch is “Route based on the originating port ID”, which essentially pins all traffic for a VM to a particular uplink. vSphere makes sure that VMs are evenly distributed between the uplinks to use all network bandwidth available.

From each uplink (or vNIC in UCS world) traffic is forwarded through an adapter port channel to a FEX, then to a Fabric Interconnect and leaves UCS from a FI uplink. Within UCS traffic is distributed between port channel members using source/destination IP hash algorithm. Which is even more granular and is capable of very efficient traffic distribution between all members of a port channel all the way up to your network core.

ucs_loadbalancing

If you look at the vSwitch you’ll see that with UCS each uplink shows the maximum available bandwidth from vNIC and is not limited to a port channel member speed of 10Gb. Why is this so powerful? Because with UCS you don’t need to slice adapter’s available bandwidth between different types of traffic. Even though you provision multiple vNICs and vHBAs for the vSphere hosts, UCS uses the same port channel links (20Gb in the example below) from the VIC adapter to transfer all traffic and takes care of load balancing for you.

vswitch_uplinks

You may legitimately ask, if UCS uses the same pipe to transfer all data regardless of which vSwitch uplink is being used, then how can I make sure that different types of traffic, such as vMotion, storage, VM traffic, replication, etc, do not compete for the same pipe? First you need to ask yourself if you can saturate that much bandwidth with your workloads. If the answer is yes, then you can use another great feature available in UCS, which is QoS. QoS lets you assign a minimum available bandwidth guarantee on a per vNIC/vHBA basis. But that’s a topic for another blog post.

References

In this post I tried to summarise the logic behind UCS traffic distribution. If you want to dig deeper in UCS network architecture, then there’re a lot of great bloggers out there. I would like to call out the following authors:

 

Advertisement

Brocade 300 Firmware Upgrade

December 14, 2015

In my previous post Brocade 300 Initial Setup I briefly went through the firmware upgrade process, which is a part of every new switch installation. Make sure to check the post out for instructions on how to install a FTP server. You will need it to upload firmware to the switch.

I intentionally didn’t go into all details of firmware upgrade in my previous post, as it’s not necessary for a green field install. For a production switch the process is different. The reason is, if you’re upgrading to a Fabric OS version which is two or more versions apart from the current switch firmware revision, it will be disruptive and take the FC ports offline. Which is fine for a new deployment, but not ideal for production. 

Disruptive and Non-Disruptive Upgrades

Brocade Fabric OS major firmware release versions are 6.3.x, 6.4.x, 7.0.x, 7.1.x, 7.2.x, etc. For a NDU the rule of thumb is to apply all major releases consecutively. For example, if my production FC switch is running FOS version 6.3.2b and I want to upgrade to version 7.2.1d, which is the latest recommended version for my hardware platform, then I’ll have to upgrade from 6.3.2b to 6.4.x to 7.0.x to 7.1.x and finally to 7.2.1d.

First and foremost save the current switch config and make a config backup via FTP (give write permissions to your FTP user’s home folder). Don’t underestimate this step. The last thing you want to do is to recreate all zoning if switch loses config during the upgrade:

> cfgSave
> configUpload

configUpload

In case you need to restore, you can run the following command to download the backed up config back to the switch:

> configDownload

Next step is to install every firmware revision up to the desired major release (-s key is not required):

> firmwaredownload

brocade_ndu.JPG

Brocade switch has two firmware partitions – primary and secondary. Primary is the partition the switch boots from. And the secondary partition is used for firmware upgrades.

After each upgrade switch does a warm reboot. All FC ports stay up and switch continues to forward FC frames with no disruption to FC traffic. To accomplish that, switch uses the secondary partition to upload the new firmware to and then quickly swap them without disrupting FC switching.

At a high level the upgrade process goes as follows:

  • The Fabric OS downloads the firmware to the secondary partition.
  • The system performs a high availability reboot (haReboot). After the haReboot, the former secondary partition is the primary partition.
  • The system replicates the firmware from the primary to the secondary partition.

Each upgrade may take up to 30 minutes to complete, but in my experience it doesn’t take more than 10 minutes. Once the first switch is upgraded, log back in and check the firmware version. And you will see how secondary partition has now become primary and firmware is uploaded to the secondary partition.

brocade_upgrade3

As a last step, check that FC paths on all hosts are active and then move on to the second switch. The steps are exactly the same for each upgrade.

Firmware Upload and Commit

Under normal circumstances when you run the firmwareDownload command, switch does the whole upgrade in an automated fashion. After the upgrade is finished you end up with both primary and secondary partitions on the same firmware version. But if you’re a large enterprise, you may want to test the firmware first and have an option to roll-back.

To accomplish that you can use -s key and disable auto-commit:

single_mode

Switch will upload the firmware to the secondary partition, switch secondary and primary partitions after a reboot, but won’t replicate the firmware to the secondary partition. You can use the following command to restore firmware back to the previous version:

> firmwareRestore

Or if you’re happy with the firmware, commit it to the secondary partition:

>  firmwareCommit

The only caveat here, a non-disruptive upgrade is not supported in this scenario. When switch reboots, it’ll be disruptive to FC traffic.

Important Notes

When downloading firmware for your switch, make sure to use switch’s vendor web-site. EMC Connectrix DS-300B, Brocade 300 and IBM SAN24B-4 are essentially the same switch, but firmware and supported versions for each OEM vendor may slightly vary. Here are the links where you can get FC switch firmware for some of the vendors:

  • EMC: sign in to http://support.emc.com > find your switch model under the product section and go to downloads
  • Brocade: sign in to http://www.brocade.com > go to Downloads section > enter FOS in the search field
  • Dell: http://www.brocadeassist.com/dellsoftware/public/DELLAssist includes a subset of Fabric OS versions, which are tested and approved by Dell
  • IBM: http://ibm.brocadeassist.com/public/FabricOSv6xRelease and http://ibm.brocadeassist.com/public/FabricOSv7xRelease are the links where you can download FOS for IBM switches. You can also go to http://support.ibm.com, search for the switch in the Product Finder and find FOS under the “Downloads (drivers, firmware, PTFs)” section

References

Brocade 300 Initial Setup

December 8, 2015

There are a few steps you need to do on the Brocades before moving on to cabling and zoning. The process is pretty straightforward, but worth documenting especially for those who are doing it for the first time.

After you power on the switch there are two ways of setting it up: GUI or CLI. We’ll go hardcore and do all configuration in CLI, but if you wish you can assign a static IP to your laptop from the 10.70.70.0/24 subnet and browse to https://10.77.77.77. Default credentials are admin/password for both GUI and CLI.

Network Settings

To configure network settings, such as a hostname, management IP address, DNS and NTP use the following commands:

> switchname PRODFCSW01
> ipaddrset
> dnsconfig
> tsclockserver 10.10.10.1

Most of these commands are interactive and ask for parameters. The only caveat is, if you have multiple switches under the same fabric, make sure to set NTP server to LOCL on all subordinate switches. It instructs them to synchronize their time with the principal switch.

Firmware Upgrade

This is the fun part. You can upgrade switch firmware using a USB stick, but the most common way is to upgrade using FTP. This obviously means that you need to install a FTP server. You can use FileZilla FTP server, which is decent and free.

Download the server and the client parts and install both. Default settings work just fine. Go to Edit > Users and add an anonymous user. Give it a home folder and unpack downloaded firmware into it. This is what it should look like:

filezilla.JPG

To upgrade firmware run the following command on the switch, which is also interactive and then reboot:

> firmwaredownload -s

If you’re running a Fabric OS revision older than 7.0.x, such as 6.3.x or 6.4.x, then you will need to upgrade to version 7.0.x first and then to your target version, such as 7.3.x or 7.4.x.

In the next blog post I will discuss firmware upgrades in more detail, such as how to do a non-disruptive upgrade on a production switch and where to download vendor-specific FOS firmware from.

DC Networking

November 26, 2011

Misc photos from our server rooms. This time networking.

Here I post pictures only from central building. There are also several networking rooms in other buildings. Network core is build primarily on Cisco routers and switches. Branches use HP.

Click pictures to enlarge.

Here are the routers, switches, fibre distribution panels, etc.

Cable mess.