Posts Tagged ‘update’

Beginner’s Guide to HPE 5000 Series Switches

October 14, 2017

I don’t closely track the popularity of my blog. If what I share helps people in their day to day job, it’s already good enough to me. But I do look at site statistics now and then just out of curiosity and it seems that network-related posts get a lot of popularity. A blog post I wrote a while ago on Dell N4000 switches has quickly got in top five over the last year.

So it seems that there is a demand for entry-level switch configuration guides. I’ve worked with a quite a few different switch brands over the years, so I thought I will build on the success of the Dell blog post and this time write about HPE FlexNetwork/FlexFabric 5000 switch series.

Operating Systems

HPE has several network switch product lines. I won’t even try to cover all of them in this post. But it’s important to know that there are a few different operating systems you can encounter, while working with HPE network switches. There is a familiar ProCurve product portfolio (now merged with Aruba), which is based on ProVision operating system.

HPE FlexNetwork/FlexFabric 5000 series, on the other hand, is based on Comware operating system. It has a different CLI command set and can be a complete surprise if you’ve worked only with ProCurve switches before. So this blog post will be particularly valuable for those who’re dealing with HPE 5000 for the first time.

The following guide has been tested on a pair of HPE FlexFabric 5700-series switches. Even though commands are mostly the same, on other switch series, like FlexNetwork 5800, there might be some minor differences.

Initial Configuration

When the switch is booted for the first time it will start automatic configuration by trying to obtain settings over DHCP, which you can interrupt by Ctrl+C to get straight to CLI.

You start in user view where you can run display commands to review switch settings. To start the configuration, change to system view:

> system-view

Let’s start by configuring remote access to the switch. There are two ways you can do that. You either use the out-of-band management port:

> interface M-GigabitEthernet 0/0/0
> ip address 10.10.10.10 255.255.255.0
> ip route-static 0.0.0.0 0.0.0.0 10.10.10.1

Or you can configure a VLAN interface IP address:

> interface vlan-interface 1
> ip address 10.10.10.10 255.255.255.0
> ip route-static 0.0.0.0 0.0.0.0 10.10.10.1

Then configure switch name, enable SSH, set passwords and you can start managing the switch over SSH:

> sysname switchname

> public-key local create rsa
> ssh server enable
> user-interface vty 0 15
> authentication-mode scheme
> protocol inbound ssh

> super password simple yourpassword
> local-user admin
> password simple yourpassword
> authorization-attribute user-role level-0
> service-type ssh

User “admin” will have an unprivileged role. You will need to run the following command and enter password once logged in, to elevate to network admin rights:

> super

Intelligent Resilient Framework

In small non-business-critical environments one standalone switch is usually sufficient. In larger environments switches are typically deployed in pairs for redundancy. To simplify management and to avoid network loops most switches support some sort of MLAG or stacking. IRF is HPE’s version of it.

Determine what ports you’re going to use for IRF. There are two QSFP+ ports on 5700-series dedicated for it. And then on on the first switch (master) run the following commands (it’s recommended to shut down the ports before you set them up as IRF):

> irf member 1 priority 32
> int range FortyGigE 1/0/41 to FortyGigE 1/0/42
> shutdown
> irf-port 1/1
> port group interface FortyGigE 1/0/41
> irf-port 1/2
> port group interface FortyGigE 1/0/42
> int range FortyGigE 1/0/41 to FortyGigE 1/0/42
> undo shut
> save
> irf-port-configuration active

On the second switch (slave) run the following commands to change the IRF ID to 2:

> irf member 1 renumber 2
> reboot

When the switch comes up, configure IRF ports:

> irf member 2 priority 30
> int range FortyGigE 2/0/41 to FortyGigE 2/0/42
> shutdown
> irf-port 2/1
> port group interface FortyGigE 2/0/41
> irf-port 2/2
> port group interface FortyGigE 2/0/42
> int range FortyGigE 2/0/41 to FortyGigE 2/0/42
> undo shut
> save
> irf-port-configuration active

Now you can connect the physical IRF ports. IRF is a ring topology, that means (in my case) port 1/0/41 should connect to 2/0/42 and port 1/0/42 should connect to 2/0/41.

Second switch will automatically reboot and if all is configured correctly, you should see both switches join the IRF fabric. Member switch 1 has the highest priority of 32 and becomes the master:

> display irf

Firmware Upgrade

Firmware upgrade is the next logical step after you set up IRF. The latest firmware revision for the switches can be download from HPE web-site. Keep in mind you will need a HPE passport account, with a valid service agreement (SAID) added to it.

You will also need a TFTP server to upgrade the firmware. There are a few of them out there, but the most commonly used is probably Tftpd64.

When you get the TFTP server up and running and copy the firmware file to it, perform an upgrade:

> tftp 10.10.10.20 get 5700-CMW710-R2432P03.ipe
> boot-loader file flash:/5700-CMW710-R2432P03.ipe slot 1 main
> boot-loader file flash:/5700-CMW710-R2432P03.ipe slot 2 main
> irf auto-update enable
> reboot

Confirm firmware has been updated:

> display version

VLANs, Aggregation Groups and Tagging

In Comware the term “aggregation group” is used to describe what is a “port channel” in Cisco world. Trunk/access ports are also called tagged/untagged ports throughout the documentation.

In this section we will discuss a few common port configuration scenarios:

  • Untagged ports, which can be your iSCSI storage array ports
  • Tagged ports, such as your VMware host uplinks
  • Aggregation groups, typically used for LAGs to upstream switches

First of all create all VLANs and give them descriptions:

> vlan 10
> description iSCSI
> vlan 20
> description Server
> vlan 30
> description Dev and test

Then specify untagged ports:

> vlan 10
> port te 1/0/1
> port te 2/0/1

To configure tagged ports and allow certain VLANs (ports will be added to the VLANs automatically):

> int te 1/0/2
> description ESX01 vmnic0
> port link-type trunk
> port trunk permit vlan 20 30
> int te 2/0/2
> description ESX02 vmnic0
> port link-type trunk
> port trunk permit vlan 20 30

And to create an LACP aggregation group:

> interface bridge-aggregation 1
> description Trunk to upstream switch
> link-aggregation mode dynamic
> port link-type trunk
> port trunk permit vlan 20 30

> interface te 1/0/3
> port link-aggregation group 1
> interface te 2/0/3
> port link-aggregation group 1

Common Commands

Other useful commands that don’t fall under any specific category, but handy to know.

Display switch configuration:

> display current-configuration

Save switch configuration:

> save

Shut down a port:

> int te 1/0/27
> shutdown

Undo a command:

> undo shutdown

Conclusion

Whether you are a network engineer new to the Comware operating system or a VMware administrator looking for a quick cheat sheet for FlexNetwork/FlexFabric switches, I hope this guide has helped you get the job done.

If this blog post gets the same amount of popularity, maybe it will turn into another series. But for now – over and out.

Advertisement

Dell Repository Manager: Bootable ISO Issues

May 23, 2016

problem_solutionIn one of my previous posts I described the process of upgrading a Dell FX2 chassis firmware using Dell Repository Manager (DRM).

In an ideal world you just follow the process and in an hour or two you can get your chassis upgraded. You may sometimes run into issues. I want to go through some of them in this post, including possible remediation.

Issue Description

When exporting firmware to a bootable ISO you can find DRM not being able to download some of the bundle components with the following error in the Job Result:

Processing failed:
Failed downloading files:
Diagnostics_Application_PWMC8_LN64_OSC_1.1_A00.BIN

And errors in the Log:


60. 24/03/2016 5:58:50 PM Export to Bootable ISO : Downloaded 34 / 56
61. 24/03/2016 5:59:44 PM Export to Bootable ISO : Error downloading some files
62. 24/03/2016 5:59:45 PM Export to Bootable ISO : Failed exporting to Bootable ISO.

Workaround #1: Skip the Component

You can try the following option “Continue download irrespective of any error (in the selected components)” in the export dialog. It won’t help to get the component downloaded, but you will got a bootable ISO.

However, DRM will still keep the failed component in the bundle and try to install it during the upgrade, which will obviously fail (update 16/56):

failed_update

Once the upgrade is finished you will get the following error at the end:

Note: Some update requires machine reboot. Please reboot to CD/DVD to continue for the failed update because of the dependency…

upgrade_status

No matter how many times you reboot you will obviously get the same errors. You can ignore it if you 100% sure this is what causes the upgrade to fail or use Workaround #2.

Workaround #2: Create Custom ISO

When you create a repository in DRM it’s populated with pre-built components and bundles. But you can create custom repositories. The idea is that you can exclude the failed component from the repository by creating it manually.

Assuming you already have the base repository configured, do the following:

  • Open the existing repository and click on the Components tab
  • Deselect the failed component in the component list (in my case it was Diagnostics_Application_PWMC8_LN64_OSC_1.1_A00.BIN)
  • Click on the “Copy To” button:

custom_components

  • In the opened dialogue select “Create NEW Repository and copy component(s) into it”
  • Follow the wizard and when you click finish, components will be copied to the newly created repository
  • Open the new repository and click on the Componenets tab
  • Select all components and click on the “Copy to” button once again
  • This time select “Create a NEW Bundle in the same repository and add component(s) into it”
  • On the next screen give the bundle a name and make sure to choose “Linux 32-bit and 64-bit” in the OS Type

custom_bundle

As a result you should get a new bundle created which you can export to a bootable ISO using the same process.

Workaround #3: Use Server Update Utility

If none of the above helps you can fall back to a proven upgrade approach and use Server Update Utility (SUU). SUU is a huge 12GB ISO to download, but you can use Dell Download Manager, which supports resuming interrupted downloads. Make sure to disable proxy! Dell Download Manager does not support resuming an interrupted download if you’re using a proxy server.

SUU is not a bootable ISO. Previously you had to use Dell Systems Build and Update Utility (SBUU) to boot from it first and then mount the ISO to proceed with the upgrade. Starting with Dell 11G servers you don’t need it anymore and can upgrade firmware straight form Dell Lifecycle Controller (LC).

You’ll need to boot into the Lifecycle Controller and choose Firmware Update > Launch Firmware Update > Local Drive(CD or DVD or USB). Mount the SUU ISO and the rest is fairly straightforward. LC will upgrade the firmware and reboot the blade.

lc_upgrade

Conclusion

Dell Repository Manager is the recommended approach to upgrade firmware on Dell hardware. Unlike SUU, DRM downloads the latest updates and only the necessary components. It is also capable of making a bootable ISO.

If you have issues, rely on Server Update Utility as it’s bulletproof and always work. But be prepared to download a 12GB ISO image and make sure you have an option to bypass proxy.

Painless Dell FX2 Firmware Upgrade

April 10, 2016

Overview

Recently I’ve had a chance to play with Dell’s FX2 chassis for a bit. Dell FX2 falls into the category of blade chassis and can hold up to 8 blades with Atom or 4 blades with Xeon CPUs in a 2U chassis.

Dell_FX2

Besides the compute blades FX2 also supports storage blades, which you can dedicate to particular compute blades and use as additional storage.

On the networking side you can choose from either pass-through modules or three types of I/O aggregators – four 10G SFP+ ports, four 10GBASE-T ports, or two Fibre Channel plus two SFP+ external ports.

The chassis itself also comes in two flavors – FX2 or FX2s. The main difference between the two is that FX2s additionally has PCIe slots at the back, which can be mapped to the server blades to provide additional connectivity.

Dell_FX2_Rear

First step of every hardware solution deployment is a firmware upgrade. But when it comes to firmware on Dell blade equipment be it M1000e, VRTX or FX2 you can quickly get confused. Especially when you go to the blade section and see a dozen of hardware components. Download and update each of them individually would be daunting. Fortunately there is an better way.

blade_firmware

CMC Firmware

Upgrade starts from the chassis management controller, which has two components: Chassis Infrastructure Firmware (or Main Board) and the CMC itself. You can find them on the Chassis Overview > Update tab.

CMC firmware comes as an .exe package, which you can extract. You really need just the fx2_cmc.bin file. During upgrade you will lose access to CMC for 5-10 minutes, while CMC is rebooting.

For the infrastructure firmware you’ll need the fx2_mainboard.bin file. The gotcha with the infrastructure firmware upgrade is that you’ll need all blades to be powered off. So if you have just one chassis this might be tricky.

Blade Firmware

Blades firmware is where this gets interesting. You can certainly upgrade all blades from the CMC by downloading firmware from the Dell support web-site and choosing one component at a time in Chassis Overview > Server Overview > Update section. CMC is capable of upgrading say iDRAC across all blades simultaneously, but it’s still about a dozen components.

The easier approach would be to use Dell Repository Manager (DRM). DRM can download firmware for virtually any blade or rack server (including some of the storage and network hardware) and build a bootable ISO image for an easy upgrade.

To build a bootable ISO follow the following steps:

  • Download and install Dell Repository Manager from the Dell support web-site
  • Add a source by going to Source > View Dell Online Catalog
  • Create a repository by going to Repository > New > Create New Repository
  • In the wizard select your hardware (I selected PowerEdge FC630 from the Blade category) and choose Linux (32-bit and 64-bit) as a DUP format (I’ll explain that later).
  • Go to the newly created repository, select the bundle and click Export

export_bundle

DRM can export bundles in multiple forms, we are interested in a bootable ISO and this is why we selected the Linux DUP format when we created the repository. DRM creates a Linux bootable ISO, so there was no point selecting Windows bundles.

  • Select “Create Bootable ISO (Linux Only)” and continue with the default settings for the rest

As a result you will get an .iso file, which you can mount to the server via iDRAC Remote Console and boot from it for a firmware upgrade.

Network I/O Aggregators

FX2 I/O aggregators are Dell Force10 switches, which use Force10 OS (FTOS). FTOS firmware is NOT available from the Dell web-site. You’ll need to register an account at https://www.force10networks.com to download the firmware.

Make sure to download firmware release specifically built for FX2 I/O aggregators, which can be found in M-Series Software section.

aggregators_firmware

To upgrade the aggregators go to Chassis Overview > I/O Module Overview > Update. Aggregators reset after a reboot, so make sure to upgrade them one at a time. Or if you stacked them instead of using VLT or standalone mode, you’ll have to have a downtime, as stacked switches reboot together.

Conclusion

There is nothing fancy in upgrading firmware on a blade chassis, you want it to be quick and painless. Make sure to use Dell Repository Manager for blades upgrade. It may save you heaps of time and make your life easier.

Upgrading Cisco UCS Fabric Interconnects

March 17, 2016

I have to do this first, as this is a high-risk change for any environment:

disclaimerDISCLAMER: I ACCEPT NO RESPONSIBILITY FOR ANY DAMAGE OR CORRUPTION OF DATA THAT MAY OCCUR AS A RESULT OF CARRYING OUT STEPS DESCRIBED BELOW. YOU DO THIS AT YOUR OWN RISK.

And now to the point. Cisco has two generations of Fabric Interconnects with the third generation released just recently. There is 6100 series, which includes 6120XP and 6140XP. Second generation is 6200 series, which introduced unified ports and also has two models in its range – 6248UP and 6296UP. And there is now a third generation of 40Gb fabric interconnects with 6324, 6332 and 6332-16UP models.

We are yet to see mass adoption of 40Gb FIs. And some of the customers are still upgrading from the first to the second generation.

In this blog post we will go through the process of upgrading 6100 fabric interconnects to 6200 by using 6120 and 6248 as an example.

Prerequisites

Cisco UCS has a pair of fabric interconnects which work in an active/passive mode from a control plane perspective. This lets us do an in-place upgrade of a FI cluster by upgrading interconnects one at a time without any further reconfiguration needed in UCS Manager in most cases.

For a successful upgrade old and new interconnects MUST run on the same firmware revision. That means you will need to upgrade the first new FI to the same firmware before you can join it to the cluster to replace the first old FI.

This can be done by booting the FI in a standalone mode, giving it an IP address and installing firmware via UCS Manager.

The second FI won’t need a manual firmware update, because when a FI of the same hardware model is joined to a cluster it’s upgraded automatically from the other FI.

Preparation tasks

It’s a good idea to make a record of all connections from the current fabric interconnects and make a configuration backup before an upgrade.

ucs_backup

If you have any unused connections which you’re not planning to move, it’s a good time to disconnect the cables and disable these ports.

Cisco strongly suggests to also upgrade the firmware on all software and hardware components of the existing UCS to the latest recommended version first.

Upgrading firmware on the first new FI

Steps to upgrade firmware on the first new fabric interconnect are as follows:

  • Rack and stack the new FI close enough to the old interconnects to make sure all cables can reach it.
  • Connect a console cable to the new FI, boot it up and when you are asked “Is this Fabric interconnect part of a cluster”, select NO to boot the FI in a standalone mode.
  • Assign an IP address to the FI and connect to it using UCS Manager.
  • Upgrade the firmware, which will reboot the fabric interconnect.
  • Reset the configuration on the FI, which will cause another reboot:
    • # connect local-mgmt
      # erase config

  • Once the FI is upgraded and reset to factory defaults you can proceed with joining it to the cluster.

Replacing the first FI

  • Determine which old FI is in the subordinate mode (upgrade a FI only if it’s in subordinate mode!) and disable server ports on it.
  • Shut down the old subordinate FI.
  • Move L1/L2, management, server and Ethernet/FC/FCoE uplink ports to the new FI.
  • Boot the new FI. This time the new FI will detect the presence of the peer FI. When you see the following prompt type YES:
    • Installer has detected the presence of a peer Fabric interconnect. This Fabric interconnect will be added to the cluster. Continue (y/n) ?

  • Follow the console prompts and assign an IP address to the new FI. The rest of the settings will be pulled from the peer FI.

Once the new FI joins the cluster you should see the following equipment topology in UCS Manager (This screenshot was made after the primary role had been moved to the new FI. Initially you should see the new FI as subordinate.):

two_fis

  • At this stage make sure that all configuration has been applied to the new FI and you can see all LAN and SAN uplinks and port channels.
  • Enable server ports on the new FI and reacknowledge all chassis.

Reacknowledging a chassis might be disruptive to the traffic flow from the blades. So make sure you don’t have any production workloads running on it. If you have two chassis and enough capacity to run all VMs on either of them, you can temporarily move VMs between the chassis and reacknowledge one chassis at a time.

Replacing the second FI

You will need to promote the new FI to be the primary, before proceeding with an upgrade of the second FI. To change the roles, use SSH to log in to the old FI, which is currently the primary (you can’t change roles from the subordinate FI) and run the following commands:

# connect local-mgmt
# cluster lead b
# show cluster state

The rest of the process is exactly the same.

After the upgrade, if needed, reconfigure any of the links which may have had their port numbers changed, such as if you had an expansion module in the old FIs, but not on the new FIs.

References

Cisco has a guide which has a step by step procedures for upgrading fabric interconnects, I/O modules, VIC cards as well as rack-mount servers. Refer to this guide for any further clarifications:

 

Beginner’s Guide to Dell N4000 Series Switches

January 18, 2016

Dell N-Series switches run on Dell Network Operating System (DNOS) version 6.x. Unlike Dell S-Series switches which run on DNOS 9.x, derived from  Force10 Operation System (FTOS), DNOS 6.x came from the PowerConnect switch series and share the same codebase. So if you’ve ever worked with PowerConnect switches, N-Series syntax should be very familiar.

In my case I had two Dell N4032F switches. But the same set of commands applies to any other N4000 Series switch.

Initial Configuration

When you first turn the switch on, it gives you 60 seconds to enter the wizard, where you can set up network settings for the Out-of-Band (OOB) management interface and change the admin password. If you miss it you can reboot the switch and it will show the same wizard prompt again when it boots up. Or you can set it up from the CLI:

# interface out-of-band
# ip address 10.10.10.10 255.255.255.0 10.10.10.254

# show ip interface out-of-band

Once you get to the CLI prompt, configure hostname and enable SSH:

# hostname n4032f-prod

# crypto key generate rsa
# crypto key generate dsa
# ip ssh server
# ip telnet server disable

Stacking

Dell N4000 Series switches support both stacking and MLAG (Multi-chassis Link Aggregation). One of the drawbacks of the stack configuration is disruptive firmware upgrades. When you update firmware on the stack master, firmware is distributed to all stack members and all switches are rebooted simultaneously.

In MLAG each switch has its own Control Plane and can be rebooted independently. Which is MLAG’s shortcoming at the same time, because unlike stack, where all units act as one switch, in MLAG you have to manage each switch separately.

In my case I chose stacking for its simplicity.

Dell N4000

N4000 switches are stacked using the two 40Gb QSFP ports located at the front. QSFP ports are not configured in stack mode by default. Which you need to change on both switches before you can build a stack:

# stack
# stack-port Fortygigabitethernet 1/1/1 stack
# stack-port Fortygigabitethernet 1/1/2 stack

# show switch stack-ports

Once QSFP ports on both switches are configured, disconnect power from both switches and boot the switch you want to be the stack master first (typically the top switch). When the first switch has fully booted, boot the second switch and check the status. This is what you should see:

# show switch

n4000_stack

Firmware Upgrade

If it’s not a brand new switch, save the config before doing the firmware upgrade:

# copy run start
# copy running-config tftp://10.10.10.100/backup.txt

You can use any TFTP server for the firmware upgrade, such as the free Tftpd64 server.

tftpd64

Then you upload the firmware image to the stack master and reload the stack:

# copy tftp://10.10.10.100/N4000v6.2.7.2.stk backup
# boot system backup
# reload
# show version

Firmware is uploaded to a backup image. Then you select the backup image for the next boot and reload the stack. When both switches reboot you should see something similar to this:

frimware_upgraded

As part of the upgrade process the new firmware is automatically uploaded from the master to all stack members, which is a default behaviour. You can confirm it is enabled using the following command:

# show auto-copy-sw

Flow Control, Jumbo Frames and iSCSI Optimization

In my case I used two N4032F switches for an iSCSI backbone, so I needed to make sure that Flow Control and Jumbo Frames are enabled on the switch.

Flow Control is enabled by default, which you can confirm by the following command:

# show storm-control

To globally enable Jumbo Frames on all ports type:

# system jumbo mtu 9216

# show system mtu

Interestingly, Dell N4000 Series switches also have built-in iSCSI optimization, which can detect iSCSI sessions by snooping the traffic on ports 3260 and 860. It then prioritizes iSCSI traffic over the other types of traffic to guarantee low latency for storage I/O. To show iSCSI settings:

# show iscsi

By default switches only track the sessions. Traffic prioritization is disabled by default and has to be enabled manually. This didn’t matter in my case, as the switches were dedicated for storage traffic. But if you share switches between storage and server traffic, you may want to enable it. Refer to the switch User’s Configuration Guide for details.

If you’re using a Dell Compellent storage array with N4000 switches, also make sure to apply a Compellent profile to the ports where storage array is connected to:

# macro global apply profile-compellent-nas $interface_name te1/0/1
# macro global apply profile-compellent-nas $interface_name te1/0/2
# macro global apply profile-compellent-nas $interface_name te1/0/3
# macro global apply profile-compellent-nas $interface_name te1/0/4

VLANs, Trunks and Port Channels

Again, I didn’t use any VLANs and Trunks, because switches were dedicated for iSCSI traffic and were separate from the LAN core. And I didn’t need Port Channels either, as they are not required for iSCSI.

Your scenario might be different. For instance, if you have vSphere hosts connected to a NetApp array over NFS, you may want to create a Multi-Mode (LACP) VIF on the NetApp side. If that’s the case, to create a port channel on the Multi-Mode VIF ports use the following:

# interface range te1/0/2,te2/0/2
# channel-group 1 mode active
# show intefaces po1

If the switches are used for both storage and VM traffic, then you’ll need to configure the server ports and uplink them to your network core. Create your VLANs first:

# vlan 10,20,30

Configure vSwitch uplinks from the ESXi hosts. In a typical vSphere environment, traffic is tagged on the vSwitch side, which means that server ports should be configured as trunks:

# interface range te1/0/3-6,te2/0/3-6
# switchport mode trunk
# switchport trunk allowed vlan 10,20,30

And finally configure uplinks to the network core. Depending on how your LAN core is set up, you may want to create a port channel to the upstream switch and trunk the required VLANs:

# interface range te1/0/1,te2/0/1
# channel-group 2 mode active
# switchport mode trunk
# switchport trunk allowed vlan 10,20,30
# show intefaces po2

Conclusion

This guide didn’t include information on Spanning Tree, QoS or any of the switch Layer 3 features, but I hope it could get you started. At the end of the day, every environment is different. If you need additional information refer to the following guides from the Dell web-site:

 

Brocade 300 Firmware Upgrade

December 14, 2015

In my previous post Brocade 300 Initial Setup I briefly went through the firmware upgrade process, which is a part of every new switch installation. Make sure to check the post out for instructions on how to install a FTP server. You will need it to upload firmware to the switch.

I intentionally didn’t go into all details of firmware upgrade in my previous post, as it’s not necessary for a green field install. For a production switch the process is different. The reason is, if you’re upgrading to a Fabric OS version which is two or more versions apart from the current switch firmware revision, it will be disruptive and take the FC ports offline. Which is fine for a new deployment, but not ideal for production. 

Disruptive and Non-Disruptive Upgrades

Brocade Fabric OS major firmware release versions are 6.3.x, 6.4.x, 7.0.x, 7.1.x, 7.2.x, etc. For a NDU the rule of thumb is to apply all major releases consecutively. For example, if my production FC switch is running FOS version 6.3.2b and I want to upgrade to version 7.2.1d, which is the latest recommended version for my hardware platform, then I’ll have to upgrade from 6.3.2b to 6.4.x to 7.0.x to 7.1.x and finally to 7.2.1d.

First and foremost save the current switch config and make a config backup via FTP (give write permissions to your FTP user’s home folder). Don’t underestimate this step. The last thing you want to do is to recreate all zoning if switch loses config during the upgrade:

> cfgSave
> configUpload

configUpload

In case you need to restore, you can run the following command to download the backed up config back to the switch:

> configDownload

Next step is to install every firmware revision up to the desired major release (-s key is not required):

> firmwaredownload

brocade_ndu.JPG

Brocade switch has two firmware partitions – primary and secondary. Primary is the partition the switch boots from. And the secondary partition is used for firmware upgrades.

After each upgrade switch does a warm reboot. All FC ports stay up and switch continues to forward FC frames with no disruption to FC traffic. To accomplish that, switch uses the secondary partition to upload the new firmware to and then quickly swap them without disrupting FC switching.

At a high level the upgrade process goes as follows:

  • The Fabric OS downloads the firmware to the secondary partition.
  • The system performs a high availability reboot (haReboot). After the haReboot, the former secondary partition is the primary partition.
  • The system replicates the firmware from the primary to the secondary partition.

Each upgrade may take up to 30 minutes to complete, but in my experience it doesn’t take more than 10 minutes. Once the first switch is upgraded, log back in and check the firmware version. And you will see how secondary partition has now become primary and firmware is uploaded to the secondary partition.

brocade_upgrade3

As a last step, check that FC paths on all hosts are active and then move on to the second switch. The steps are exactly the same for each upgrade.

Firmware Upload and Commit

Under normal circumstances when you run the firmwareDownload command, switch does the whole upgrade in an automated fashion. After the upgrade is finished you end up with both primary and secondary partitions on the same firmware version. But if you’re a large enterprise, you may want to test the firmware first and have an option to roll-back.

To accomplish that you can use -s key and disable auto-commit:

single_mode

Switch will upload the firmware to the secondary partition, switch secondary and primary partitions after a reboot, but won’t replicate the firmware to the secondary partition. You can use the following command to restore firmware back to the previous version:

> firmwareRestore

Or if you’re happy with the firmware, commit it to the secondary partition:

>  firmwareCommit

The only caveat here, a non-disruptive upgrade is not supported in this scenario. When switch reboots, it’ll be disruptive to FC traffic.

Important Notes

When downloading firmware for your switch, make sure to use switch’s vendor web-site. EMC Connectrix DS-300B, Brocade 300 and IBM SAN24B-4 are essentially the same switch, but firmware and supported versions for each OEM vendor may slightly vary. Here are the links where you can get FC switch firmware for some of the vendors:

  • EMC: sign in to http://support.emc.com > find your switch model under the product section and go to downloads
  • Brocade: sign in to http://www.brocade.com > go to Downloads section > enter FOS in the search field
  • Dell: http://www.brocadeassist.com/dellsoftware/public/DELLAssist includes a subset of Fabric OS versions, which are tested and approved by Dell
  • IBM: http://ibm.brocadeassist.com/public/FabricOSv6xRelease and http://ibm.brocadeassist.com/public/FabricOSv7xRelease are the links where you can download FOS for IBM switches. You can also go to http://support.ibm.com, search for the switch in the Product Finder and find FOS under the “Downloads (drivers, firmware, PTFs)” section

References

Brocade 300 Initial Setup

December 8, 2015

There are a few steps you need to do on the Brocades before moving on to cabling and zoning. The process is pretty straightforward, but worth documenting especially for those who are doing it for the first time.

After you power on the switch there are two ways of setting it up: GUI or CLI. We’ll go hardcore and do all configuration in CLI, but if you wish you can assign a static IP to your laptop from the 10.70.70.0/24 subnet and browse to https://10.77.77.77. Default credentials are admin/password for both GUI and CLI.

Network Settings

To configure network settings, such as a hostname, management IP address, DNS and NTP use the following commands:

> switchname PRODFCSW01
> ipaddrset
> dnsconfig
> tsclockserver 10.10.10.1

Most of these commands are interactive and ask for parameters. The only caveat is, if you have multiple switches under the same fabric, make sure to set NTP server to LOCL on all subordinate switches. It instructs them to synchronize their time with the principal switch.

Firmware Upgrade

This is the fun part. You can upgrade switch firmware using a USB stick, but the most common way is to upgrade using FTP. This obviously means that you need to install a FTP server. You can use FileZilla FTP server, which is decent and free.

Download the server and the client parts and install both. Default settings work just fine. Go to Edit > Users and add an anonymous user. Give it a home folder and unpack downloaded firmware into it. This is what it should look like:

filezilla.JPG

To upgrade firmware run the following command on the switch, which is also interactive and then reboot:

> firmwaredownload -s

If you’re running a Fabric OS revision older than 7.0.x, such as 6.3.x or 6.4.x, then you will need to upgrade to version 7.0.x first and then to your target version, such as 7.3.x or 7.4.x.

In the next blog post I will discuss firmware upgrades in more detail, such as how to do a non-disruptive upgrade on a production switch and where to download vendor-specific FOS firmware from.

Configuring remote access to AIX

May 16, 2012

I work on an old AIX 5.1:

# oslevel -r
5100-03

By default it has only telnet preinstalled. Which works out of the box without additional configuration. However, there are several recommended steps to do.

Telnet

Firstly check if you have stable network connection. I had problems connecting to AIX box after connection timeout. It seemed that telnet session somehow hang on the OS side and didn’t allow me to reconnect. To prevent that, you have two options. If you use PuTTY then go to Settings->Connection and set amount of seconds between keepalive packets to say 60 seconds. And PuTTY will maintain connection automatically. Another workaround is to edit TMOUT variable in /etc/profile. By default AIX uses ksh shell which uses this parameter to detect idle sessions. If set this variable to 120, then after two minutes ksh will throw a warning that session will be closed in 60 seconds. This means that if your telnet session breaks, ksh will automatically terminate its shell. (I checked that and it turned out that TMOUT doesn’t help here.)

TCP Wrapper

By default telnet access in AIX is opened for everyone. It’s not what you want for sure. AIX has built-in firewall (called AIX TCP/IP Filters) but it’s rather cumbersome to use it just to restrict telnet access. I’d prefer TCP Wrapper, which is standard for Linux, but optional for AIX. You can get AIX LPP package from Bull AIX freeware site here: http://www.bullfreeware.com/index2.php?page=lppaix51. Then simply:

chmod +x tcp_wrappers-7.6.1.0.exe

Extract package contents by running the executable. Then run smit from directory where you extracted files and go to Software Installation and Maintenance -> Install and Update Software ->  Install Software. Set current directory in “INPUT device / directory for software”. You can view software available, if you press F4 in “SOFTWARE to install” field. Change “ACCEPT new license agreements?” to yes and press Enter.

When package is installed, edit /etc/inetd.conf. Find telnet line and change it:

#telnet stream tcp6 nowait root /usr/sbin/telnetd telnetd -a
telnet stream tcp6 nowait root /usr/local/bin/tcpd telnetd -a

And restart inetd service:

stopsrc -s inetd && startsrc -s inetd

Now to limit telnet access create /etc/hosts.allow:

telnetd: 123.234.123.234 234.123.234.123

and /etc/hosts.deny:

ALL:ALL

Secure Shell

Telnet is completely outdated and insecure protocol. So you’d probably prefer ssh on the server side. I believe SSH is bundled with AIX 5.1, but I simply downloaded it from Bull site. Additionally to OpenSSH package you will have to setup OpenSSL prerequisite. Here are the links:

http://www.bullfreeware.com/affichage.php?id=779
http://sourceforge.net/projects/openssh-aix/files/openssh-aix51/4.1p1/

Install OpenSSL simply by:

rpm -i openssl-0.9.7l-1.aix5.1.ppc.rpm

In case of OpenSSH you will need to gunzip it, untar it and setup using smit. But if you work on AIX with old maintenance level (ML3 in my case) you can run into the following error when running ssh service:

getnameinfo failed: Invalid argument

You can see it if you run sshd with -D and -d flags. Solution here is to download AIX 5.1 ML9 and POSTML9 fixes from IBM Fix Central, extract them and setup in Software Installation and Maintenance -> Install and Update Software ->  Update Installed Software to Latest Level (Update All).

SSH is a standalone service, so you do not need to edit /etc/inetd.conf. Just add new sshd line to /etc/hosts.allow and you are good to go. However, if your ssh was built without wrapper support, then you have a problem. You can check that by calling:

# dump -H /usr/sbin/sshd

/usr/sbin/sshd:

                        ***Loader Section***
                      Loader Header Information
VERSION#         #SYMtableENT     #RELOCent        LENidSTR
0x00000001       0x00000115       0x00000601       0x00000096

#IMPfilID        OFFidSTR         LENstrTBL        OFFstrTBL
0x00000006       0x00006224       0x0000075a       0x000062ba

                        ***Import File Strings***
INDEX  PATH                          BASE                MEMBER
0      /usr/lib:/lib:/opt/freeware/lib
1                                    libc.a              shr.o
2                                    libpthreads.a       shr_comm.o
3                                    libpthreads.a       shr_xpg5.o
4                                    libcrypto.a         libcrypto.so.0.9.7
5                                    libz.a              libz.so.1

If there is no libwrap.a, then the only option you have is to run sshd under tcpd which is run by inetd. To accomplish that add the first line into /etc/services and second into /etc/inetd.conf:

ssh 22/tcp
ssh stream tcp6 nowait root /usr/local/bin/tcpd sshd -i

Switch ‘-i’ tells sshd to generate smaller keys. Otherwise you will wait significant amount of time for login prompts. Also don’t forget to remove sshd startup and shutdown scripts from /etc/rc.d/rc2.d.

VMware Tools update issue

September 20, 2011

Recently I decided to update VMware Tools on VMs because most of them showed Out of date in VI client. For some reason several Linux VMs didn’t update even though VI client showed no error. I tried to update from inside VM by running /usr/sbin/vmware-tools-upgrade and it showed that there is not enough space in /tmp. I enlarged /tmp from 128 to 512MB and update went fine this time.

Take into account that:

  1. Windows VM will most likely be rebooted after update.
  2. In Linux VMmware Tools may not start automatically. If it’s the case start it manually by calling /etc/init.d/vmware-tools start.
  3. Network interfaces in Linux may go down after VMware Tools update. Boot them manually.

 

VMware Update Manager failure

September 20, 2011

VMware Update Manager is the most annoying tool in VI3. Frequent uninformative VMWare Update Manager had a failure errors, large unreadable logs, regular problems with connection between ESX host and Update Manager, especially if server which hosts Virtual Center has several NICs, sporadic bugs in Update Manager which are usually solved by service restart.

Recently I got another VMWare Update Manager had a failure with the following description in C:\Documents and Settings\All Users\Application Data\VMware\VMware Update Manager\Logs\vmware-vci-log4cpp.log:

[2011-09-13 15:09:15:895 ‘VcTaskMonitor’ 5720 DEBUG] [vcTaskMonitor, 59] VcTaskMonitor destroyed for session[ACE9193D-026B-4E40-9436-548A2F7DD286]2EE1529C-2025-461F-8890-7C4A9DA02822
[2011-09-13 15:09:15:895 ‘InventoryMonitor’ 5824 WARN] [InventoryMonitor, 632] Unexpected filter: session[ACE9193D-026B-4E40-9436-548A2F7DD286]A096575F-8EC0-45A1-BDF9-A1128CFA639B
[2011-09-13 15:09:15:957 ‘SingleHostScanTask.SingleHostScanTask{8}’ 5720 ERROR] [vciTaskBase, 577] Task execution has failed: SingleHostScan : Platform Configuration Error: ERROR: Integrity Error!
Signature 0BFA1C860F0B0A6CF5CD5D2AEE7835B14789B619: keyExpired: 4789B619
ERROR: BundleID:None/Unknown
ERROR: File:/var/spool/esxupdate/contents.xml

This error is described in KB Article: 1030001. It says:

To continue applying patches on ESX 3.5 hosts, the secure key needs to be updated before June 1, 2011.

It means that if you didn’t apply this patch then all updates will fail starting from June 1, 2011. All VMware updates are signed and old key just expired.

To solve this issue download ESX350-201012410-BG and all prerequisites (it was ESX350-201012404 for me), SCP them to ESX host, unzip and install using –nosig option:

# esxupdate -b ESX350-201012410-BG –nosig update