Posts Tagged ‘uplink’

vDS Health Check: Useful, but Overlooked

June 11, 2016

healthcheckAs of June 30, 2016 vSphere Enterprise licence will no longer be available. As more and more customers start moving to Enterprise Plus licencing scheme, we will see wider adoption of Enterprise Plus features, such as vSphere Distributed Switch, SIOC, NIOC and Storage DRS.

Therefore, there will be a continuing demand in better coverage of these features and I want to start blogging about them more to meet this demand. And the first blog will be about one of the hidden gems – vSphere distributed switch Health Check.

Feature overview

The reason why I picked health check specifically is because it’s very helpful when troubleshooting connectivity issues on vSphere distributed switch uplinks. But at the same time it’s lesser known, because it’s buried deep in vDS setting section, available only from the Web Client and is disabled by default.

vDS health check is capable of doing the following tests:

  • VLAN and MTU
  • Teaming and failover

By sending broadcasts from one link and receiving them from another, vDS health check can determine if a VLAN is not allowed on a trunk or there is an MTU mismatch. In the same way if you’re using LACP, vDS will alert you if there are any port channel misconfigurations.

Usage example

Before you can start using vDS health check you need to enable it in vSphere Web Client > Networking > dvSwitch > Manage > Settings > Health check. Click on the Edit button and enable both tests.

enable_healthcheck

Now if you go to the Monitor tab and click on the Health section, after a few minutes of initial checks you will see a per host breakdown of identified issues.

healthcheck_results

In my case I was able to immediately determine that VLAN 120 was not trunked on the physical switch. The port group this VLAN ID was assigned to had no VMs at the time. And the issues was fixed proactively, before it could start causing issues.

vlan_mismatch

Possible use cases

The above example is a very straightforward one. VLAN was not added to the trunk port on the physical switch on any of the uplink ports and the issue would’ve been determined right after the first VM was added to the port group.

But what if the VLAN was missing only on one of the host’s uplinks? VM would be running fine on another host and after a vMotion (during a potential maintenance work on that host) it could get migrated to the affected host and lose connectivity. Result – impact to production workloads and time wasted on troubleshooting.

MTU checks are particularly helpful for the environments where a non-standard MTU size is used, such as 9000 byte jumbo frames for iSCSI. It’s important for MTU to match on both vDS and physical switch. This check confirms exactly that.

And last but not least, teaming and failover tests can be useful when you’re using LACP capability of vDS and one of the uplinks is not added to the port channel configuration, which can also cause some nasty issues.

Conclusion

In my opinion vSphere Distributed Switch Health Check is one of those valuable, but overlooked features. I suggest to give it a go if you haven’t already done so. It will notify you for any newly introduced network issues or who knows, maybe it will even find a network mismatch in your current vDS configuration.

Traffic Load Balancing in Cisco UCS

December 21, 2015

Whenever I deploy a Cisco UCS at a customer the question I get asked a lot is how traffic flows within the system between VMs running on the blades and FEX modules, FEX modules and Fabric Interconnects and finally how it’s uplinked to the network core.

Cisco has a range of CNA cards for UCS blades. With VIC 1280 you get 8 x 10Gb ports split between two FEX modules for redundancy. And FEX modules on their own can have up to 8 x 10Gb Fabric Interconnect facing interfaces, which can give you up to 160Gb of bandwidth per chassis. And all these numbers may sound impressive, but unless you understand how your VMs traffic flows through UCS it’s easy to make wrong assumptions on what per VM and aggregate bandwidth you can achieve. So let’s dive deep into UCS and shed some light on how VM traffic is load-balanced within the system.

UCS Hardware Components

Each Fabric Extender (FEX) has external and internal ports. External FEX ports are patched to FIs and internal ports are internally wired to the blade adapters. FEX 2204 has 4 external and 16 internal and FEX 2208 has 8 external and 32 internal ports.

External ports are connected to FIs in powers of two: 1, 2, 4 or 8 ports per FEX and form a port channel (make sure to use “Port Channel” link grouping preference under Chassis/FEX Discovery Policy). Same rule is applied to blade Virtual Interface Cards (VIC). The most common VIC 1240 and 1280 have 4 x 10Gb and 8 x 10Gb ports respectively and also form a port channel to the internal FEX ports. Every VIC adaptor is connected to both FEX modules for redundancy.

chassis_network

Fabric Interconnects are then patched to your network core and FC Fabric (if you have one). Whether Ethernet uplinks will be individual uplinks or port channels will depend on your network topology. For fibre uplinks the rule of thumb is to patch FI A to your FC Fabric A and FI B to FC Fabric B, which follows the common FC traffic isolation principle.

Virtual Circuits

To provide network and storage connectivity to blades you create virtual NICs and virtual HBAs on each blade. Since internally UCS uses FCoE to transfer FC frames, both vNICs and vHBAs use the same 10GbE uplinks to send and receive traffic. Worth mentioning that Cisco uses Data Center Bridging (DCB) protocol with it’s sub-protocols Priority Flow Control (PFC) and Enhanced Transmission Selection (ETS), which guarantee that FC frames have higher priority in the queue and are processed first to ensure low latency. But I digress.

UCS assigns a virtual circuit to each virtual adaptor, which is a representation of how the traffic traverses the system all the way from the VIC port to a FEX internal port, then FEX external port, FI server port and finally a FI uplink. You can trace the full path of each virtual adaptor in UCS Manager by selecting a Service Profile and viewing the VIF Paths tab.

vif_paths

In this example we have a blade with four vNICs and two vHBAs which are split between two fabrics. All virtual adaptors on fabric A are connected through VIC port channel PC-1283 which is represented as port channel PC-1025 on the FEX A side. Then traffic leaves FEX A and reaches the Fabric Interconnect A which sends the traffic out to the network core through port channel A/PC-1.

You can also get the list of port channels from the FI CLI:

# connect nxos
# show port-channel summary

ucs_portchannels

Network Load Balancing

Now that we know how all components are interconnected to each other, let’s discuss the traffic flow in a typical VMware environment and how we achieve the massive network throughput that UCS provides.

As an example let’s take a look at the vSwitch where your VM Network port group is configured. vSwitch will have two uplinks – one goes to Fabric A and the other one to Fabric B for redundancy. Default load balancing policy on a vSwitch is “Route based on the originating port ID”, which essentially pins all traffic for a VM to a particular uplink. vSphere makes sure that VMs are evenly distributed between the uplinks to use all network bandwidth available.

From each uplink (or vNIC in UCS world) traffic is forwarded through an adapter port channel to a FEX, then to a Fabric Interconnect and leaves UCS from a FI uplink. Within UCS traffic is distributed between port channel members using source/destination IP hash algorithm. Which is even more granular and is capable of very efficient traffic distribution between all members of a port channel all the way up to your network core.

ucs_loadbalancing

If you look at the vSwitch you’ll see that with UCS each uplink shows the maximum available bandwidth from vNIC and is not limited to a port channel member speed of 10Gb. Why is this so powerful? Because with UCS you don’t need to slice adapter’s available bandwidth between different types of traffic. Even though you provision multiple vNICs and vHBAs for the vSphere hosts, UCS uses the same port channel links (20Gb in the example below) from the VIC adapter to transfer all traffic and takes care of load balancing for you.

vswitch_uplinks

You may legitimately ask, if UCS uses the same pipe to transfer all data regardless of which vSwitch uplink is being used, then how can I make sure that different types of traffic, such as vMotion, storage, VM traffic, replication, etc, do not compete for the same pipe? First you need to ask yourself if you can saturate that much bandwidth with your workloads. If the answer is yes, then you can use another great feature available in UCS, which is QoS. QoS lets you assign a minimum available bandwidth guarantee on a per vNIC/vHBA basis. But that’s a topic for another blog post.

References

In this post I tried to summarise the logic behind UCS traffic distribution. If you want to dig deeper in UCS network architecture, then there’re a lot of great bloggers out there. I would like to call out the following authors: