Posts Tagged ‘virtual’

Mounting VMware Virtual Disks

June 11, 2013

H_Storage04There are millions of posts on that topic all over the Internet. Just another repetition mostly for myself.

VMware has Virtual Disk Development Kit (VDDK) which is more of an API for backup software vendors. But it includes a handy tool called vmware-mount, which gives you an ability to mount VMware virtual disks (.vmdk) from wherever you want.

Download VDDK from VMware site. It’s free. And then run vmware-mount with the following keys:

> vmware-mount driveletter: “[vmfs_datastore] vmname/diskname.vmdk” /i:”datacentername/vm/vmname” /h:vcname /u:username /s:password

Choose drive letter, specify vmdk path, inventory path to VM (put ‘vm’ in lowercase between datacenter and vm name, upper case will give you an error) and vCenter or ESXi host name.

Note however, that you can mount only vmdks from powered off VMs. But there is a workaround. You can mount vmdk from online VMs in read-only mode if you make a VM snapshot. Then the original vmdk won’t be locked by ESXi server and you will be able to mount it.

To unmount a vmdk run:

> vmware-mount diskletter: /d

There are also several GUI tools to mount vmdks. But vmware-mount is enough for me.

Advertisements

NetApp thin-provisioning for VMware LUNs

May 22, 2013

thin

LUN and Volume Thin Provisioning

I already described thin provisioning of VMware NFS volumes some time ago here. Now I want to discuss thin provisioning of LUNs.

LUNs are different from VMFS on top of NFS implementation, because LUN is an additional container inside of NetApp FlexVol. So if you’re using FC, you need to thin provision both LUN and volume:

> lun set reservation “/vol/targetvol/targetlun” disable
> vol options “targetvol” guarantee none

In fact, you can make the LUN thin and the volume thick. Then storage space that’s not used by the LUN, is returned to the volume level. But in this case it cannot be used by other volumes as a shared pool of space.

As the best practice, NetApp now recommends to set Fractional Reserve and Snap Reserve for your volumes to 0%. Don’t forget about that, if you want to save more storage space:

> vol options “targetvol” fractional_reserve 0
> snap reserve “targetvol” 0

Disable snapshots if you don’t use them:

> snap sched “targetvol” 0

It’s easy as that. Now you don’t waste your space by reserving it ahead, but use it as a shared pool of resources. But make sure to monitor aggregate free space. If you starting to run out of storage, plan purchase of new disks in advance or redistribute data between other aggregates.

Safety Features

Disabling volume level, LUN and snapshot reservations helps you to save storage space. The drawback of this approach is that you don’t have any mechanisms in place to prevent volume out-of-space situations. If you enable snapshots on the volume and they consume all the volume space, the volume goes offline. Very undesirable consequence. NetApp has two features that can serve as safety net in thin-provisioned environments: autosize and snap autodelete.

Snap autodelete automatically removes old snapshots if there is no space left inside the volume. Autosize, on the other hand, allows the volume to automatically grow to the specified limit (+20% to the volume size by default) in specified increments (5% of the volume size by the default). You can also specify what to do first autosize or snapshot autodelete by using ‘try_first’ option.

> snap autodelete “targetvol” on
> vol autosize “targetvol” on
> vol options “targetvol” try_first volume_grow

SnapMirror Considerations

If you use SnapMirroring and switch on the autosize on the source volume, then the destination volume won’t grow automatically. And SnapMirror will break the relationship if it runs out of space on the smaller destination volume. The trick here is to make the destination volume as big as the autosize limit for the source volume and thin provision the destination volume. By doing that you won’t run out of space on destination even if the source volume grows to its maximum.

Further reading

TR-3965: NetApp Thin Provisioning Deployment and Implementation Guide Data ONTAP 8.1 7-Mode

NetApp thin provisioning for VMware

March 15, 2012

Thin provisioning is a popular buzzword, especially when it comes to NetApp. However, it can really save you time and headache in a number of situations. We use thin provisioning while presenting NFS volumes from NetApp to VI3 ESX hosts. Well, NetApp already let you change size of its FlexVol volumes on the fly. But you need to do it manually. Thin provisioning helps you to configure volumes so that in case of space shortage on a volume it will automatically expand without manual intervention. Of course you need to look after your volumes, otherwise they can fill all your storage space. But it will save you enough time to resolve data growth problem. Without thin provisioning in such situation your applications can easily crash.

NetApp doesn’t support iSCSI thin provisioning for VMware, so NFS is the only option. Don’t be afraid of performance issues. Without a doubt it’s slower than FC, but NetApp is famous for its NFS performance and it’s very well suited for mid-level workloads.

To be more specific, using thin provisioning you can create say 300GB virtual hard drive for particular VM and it will initially use no space. Then it will grow as long as you fill it. It can save you tremendous amount of storage space. Because you never exactly know ahead how much space you need. But be aware, if you will try to migrate thin provisioned virtual hard drive using storage migration plugin for VMware Virtual Center then it will fill all space. It means 300GB will use all 300GB even if it’s half-full.

The best article which will help you to integrate NetApp with VMware VI3 is NetApp TR-3428: NetApp and VMware Virtual Infrastructure 3 Storage Best Practices. What I will write here are basically excerpts from this article.

NetApp Configuration

Lets start from the NetApp configuration. First thing to do is to disable snapshots as usual. Generally it’s not a good idea to make snapshots of VMware virtual hard drives on the fly. They won’t be consistent. I will touch this topic in my later posts.

> snap sched <vol-name> 0 0 0
> snap reserve <vol-name> 0

Next step is to disable access time update on the volume, which is safe because VMware doesn’t rely on accurate access time for its files. It will increase performance, since Filer won’t need to update access time for files each time they are read or written.

> vol options <vol-name> no_atime_update on

Then configure the thin provisioning feature itself by switching volume auto size policy to on. It has two keys -m and -i. By -m you set maximum volume size and by -i you configure increment size.

> vol autosize <vol-name> [-m <size>[k|m|g|t]] [-i <size>[k|m|g|t]] on

NetApp recommends to disable Fractional Reserve for thin provisioned volumes, it’s just not needed anymore. Fractional Reserve guarantees successful writes to volumes in case you use snapshots. According to how snapshots work if you completely overwrite snapshot data you will use double amount of storage space. And it’s where Fractional Reserve comes into place. It reserves 100% of additional space for such cases. It means you will never run into situation when you are out of space due to active snapshots. But since we enabled auto size, our volume will resize on demand and Fractional Reserve becomes redundant. Supposedly auto size was implemented little bit later than Fractional Reserve and we have both of them in NetApp.

> vol options <vol-name> fractional_reserve 0

In case you use snapshots as a tool for instant VMware block level backups you can change auto delete policy. I said earlier that you should disable snapshot schedule, however you can manually (using scripts) create consistent snapshots. If you want to do that then you can additionally instruct NetApp to delete oldest snapshots when you are out of space on Filer and can’t auto grow volume.

> snap autodelete <vol-name> commitment try trigger volume target_free_space 5 delete_order oldest_first
> vol options <vol-name> try_first volume_grow

Now we need to create NFS export on NetApp Filer. It’s where FilerView interface comes handy. In short, you should give your ESX hosts read-write access, root access and configure Unix security style.

VMware Configuration

VMware configuration is trivial. Go to VMware Add Storage Wizard, select Network File System, then point to your NetApp filer and specify your volume path. Additionally NetApp recommends to tune NFS heartbeat parameters. Go to Host Configuration – Advanced Settings – NFS and for ESX 3.0 hosts change:

NFS.HeartbeatFrequency to 5 from 9
NFS.HeartbeatMaxFailures to 25 from 3

For ESX 3.5 hosts change:

NFS.HeartbeatFrequency to 12
NFS.HeartbeatMaxFailures to 10

There are much more information and tuning parameters that you might want to read about. Find some time to look through TR-3428 in case you need some clarifications or additional info.

Random DC pictures

January 19, 2012

Several pictures of server room hardware with no particular topic.

Click pictures to enlarge.

10kVA APC UPS.

UPS’s Network Management Card (NMC) (with temperature sensor) connected to LAN.

Here you can see battery extenders (white plugs). They allow UPS to support 5kVA of load for 30 mins.

Two Dell PowerEdge 1950 server with 8 cores and 16GB RAM each configured as VMware High Availability (HA) cluster.

Each server has 3 virtual LANs. Each virtual LAN has its own NIC which in its turn has multi-path connection to Cisco switch by two cables, 6 cables in total.

Two Cisco switches which maintain LAN connections for NetApp filers, Dell servers, Sun tape library and APC NMC card. Two switches are tied together by optic cable. Uplink is a 2Gb/s trunk.

HP rack with 9 HP ProLiant servers, HP autoloader and MSA 1500 storage.

HP autoloader with 8 cartridges.

HP MSA 1500 storage which is completely FC.

Hellova cables.